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I. INTRODUCTION 

Since electromagnetic scattering from conducting surfaces of arbitrary shapes in 
a homogeneous medium using an EFIE and the RWG basis functions was reported 
[1], much effort has been expended on the SIE/MoM formulation exploiting the 
usefulness of the basis function in modeling surfaces of arbitrary shapes and types, 
for example, see [2] - [7]. One area of the effort is to apply the method to a finite 
structure having dielectric and/or conducing bodies. 

The scattering from a homogeneous dielectric body has been reported using a 
PMCHW formulation and RWG basis functions for both electric and magnetic 
currents [2]. The PMCHW formulation has the advantage that it has been shown 
to yield resonance-free unique solutions [8]. 

Analysis of combined conductor and dielectric structures has also been reported 
[3], [4], where the EFIE was employed for both conducting and dielectric bodies us- 
ing a new set of basis functions for magnetic currents that are locally orthogonal to 
the RWG basis functions for electric currents. The EFIE has the internal resonance 
problem for a closed body, and thus for a dielectric body; however, the application 
in [3], [4] was principally to thin substrates where the resonance problem may not 
be significant. The EFIE approach was used there because the extension of the 
PMCHW formulation for a dielectric body to that for the combined structure did 
not seem to work [4]. The use of mutually orthogonal sets of basis functions for 
electric and magnetic currents also has its own disadvantages. One of them is that 
it increases the matrix fill time for a mostly dielectric structure because it does 
not allow one to make use of the duality properties of the field operators, which is 
exploitable otherwise. 

In our work modeling dielectric resonator antennas, however, we have found 
that a direct extension of the PMCHW formulation to the combined structure does 
appear to work, even for rather extreme geometrical configurations. We have found 
that an E-PMCHW formulation [9], which employs an EFIE for the conducting 
part and the PMCHW formulation for the dielectric part using the same RWG 
basis functions for both electric and magnetic currents, works successfully for the 
combined structures. In this paper our results are presented with a formalism 
which applies to arbitrary multi-region combined structures. 

II. FORMULATION 

The geometry considered is a general inhomogeneous body with NR dielectric 
regions, each of which may have embedded conducting and/or dielectric bodies 
as well as impressed sources as region R{ does in Fig. 1. The interface between 
any two regions may also have infinitely thin embedded conducting bodies.  The 

0-7803-6369-8/00/$10.00 (c)2000 IEEE 



(Ei,H,-)    ^M] 
SijD                          ■"■ VFO 

~~ --^  VT\ 

/ WUeV \       — VT 

'        Dn/     N % SjkD 3  ^' 
^ Ä<    j    /*—.  -\ 

Fig. 1.   General geometry under consideration described by various surface types. 

regions have permittivities ej and permeabilities //j, where i = 1,..., Afo. Both ej 
and /ij may be complex to represent lossy materials. All conductors are considered 
to be PEC (Perfect Electric Conductor) material. One of the regions, region R4 in 
Fig. 1, may be of infinite extent and will comprise free space. The total fields in 
each region are denoted by Ej and Hj, where i = 0,1,..., NR, for the electric and 
magnetic fields, respectively, and i = 0 denotes PEC regions with EQ = Ho = 0. 

Any two adjacent regions are separated by a conducting (Sijc, type TZF2) or 
dielectric (5»JO, type TXF) surface, where *, j = 1,..., NR, i ^ j, respectively. An 
auxiliary surface consisting only of triangles with boundaries lying on the curve 
formed by the junction of a TT2 and a TXF is defined and denoted by S^QD- 

This surface requires special treatment in the equivalent problems. The interface 
between a non-zero thickness conducting body and a dielectric region forms another 
surface type denoted in the same way (Sio, type VTti). An infinitely thin conducting 
body in a dielectric region forms yet another type of surface (Sa, type VTX). Thus, 
there are four types of surfaces as shown in Fig. 1. However, the types 7ZF0 and VT\ 
are treated differently only at a surface/surface junction. In our present problem, 
where only junctions S{JCD exist, both of them are denoted by S^ and VTQ and 
treated in the same way henceforth. 

According to the equivalence principle [10], the original problem can be decom- 
posed into NR auxiliary problems, one for each dielectric region. To obtain the 
auxiliary problem for region R4, the impressed sources of the original problem are 
retained only in region R4 and the boundaries of the region are replaced by equiv- 
alent surface currents radiating in a homogeneous medium with the constitutive 
parameters of region Ri. Electric currents are used for the conducting surfaces, 
while electric and magnetic currents are used for the dielectric boundaries. The 
electric and magnetic currents appearing on opposite sides of a dielectric interface 
in different auxiliary problems are taken equal in magnitude and opposite in di- 
rection to assure the continuity of the tangential components on these boundaries. 
In this procedure, the fields produced within the region boundaries by the equiv- 
alent currents and the impressed sources in region Ri must be the same as those 
in the original problem, while the zero field is chosen to be produced outside these 
boundaries. Then, the electric and magnetic currents on Sp, the closure surface 
of the region R4, are J2- = n,; x Hj and M,; = Ej x U{, respectively. A system of 



Eil tan = o, on 5JO 

(Ei ~ Ej)|tan = o, on SijD 

(H,-- -Hj)ltan = o, on Sijo 

Eil tan = o, on Sijc 

Ejltan = o, on Sijc- 

(Ei ~Ej)ltan = o, on SijCD 

surface integro-differential equations is obtained by enforcing the boundary condi- 
tions of continuity of the tangential fields on the conducting and dielectric surfaces 
as follows 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

These equations represent the E-PMCHW formulation [9]. 

III. NUMERICAL RESULTS 

A test case similar to one used in [4] is shown in Fig. 1. A dielectric cylinder 
(0.3-m radius and 0.6-m height, e.r = 2) is used instead of the dielectric cone of [4] 
because the geometry generation portion of our code does not currently support 
triangulation of a cone. A PEC disk is separated by a distance s from the dielectric 
cylinder top. Results are shown for the bistatic E.CS for different values of s, 
including the case when the PEC disk lies directly on the cylinder top. It should be 
noted that the results were obtained in single precision and that excellent agreement 
is obtained. It should also be noted that in [4] the PEC in the s = 0 case is treated 
as an overlapping surface resulting in three unknown currents (two electric currents 
and one magnetic current), while the s = 0 case in our formulation yields a different 
set of integral equations with only two unknown currents (the two electric currents 
on opposite sides of the PEC). 

As a second test case we have considered a very thin phantom dielectric sheet 
(er = 1) with a PEC plate on the bottom surface of the sheet as shown in Fig. 3. 
Bistatic RCS results are shown for different sheet thicknesses t and are compared 
with results for the PEC plate alone. Note that the plate dimensions are on the 
order of one-half wavelength and are greater than 13,000 times the sheet thickness 
in all cases. For the t = 0.00003 m case one observes that the agreement with the 
PEC alone case is quite good, while numerical problems are beginning to appear 
for smaller thicknesses. 
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Fig. 2.   PEC plate with dielectric cylinder of er = 2 (/ = 300 MHz, 8inc = <f>inc = 0°). 

t = Thickness of Phantom Dielectric 

-2 

-4 

-6 

« 
M       -10 

-12 

-14 

-16 

1 

*«<••.         t = 0.00003 ra 
 -V>..    t = 0.000025 m 

V.   t = 0.00002 m // 

!%  !       ! if 

Vi if 

i \.; jl\ 

«, J* 
(/ 1 

a        i        i 

0  20 40 60 80 100 120 140 160 180 

Theta 
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